A Load Balancing Policy for Heterogeneous Computational Grids

نویسنده

  • Said Fathy El-Zoghdy
چکیده

Computational grids have the potential computing power for solving large-scale scientific computing applications. To improve the global throughput of these applications, workload has to be evenly distributed among the available computational resources in the grid environment. This paper addresses the problem of scheduling and load balancing in heterogeneous computational grids. We proposed a two-level load balancing policy for the multi-cluster grid environment where computational resources are dispersed in different administrative domains or clusters which are located in different local area networks. The proposed load balancing policy takes into account the heterogeneity of the computational resources. It distributes the system workload based on the processing elements capacity which leads to minimize the overall job mean response time and maximize the system utilization and throughput at the steady state. An analytical model is developed to evaluate the performance of the proposed load balancing policy. The results obtained analytically are validated by simulating the model using Arena simulation package. The results show that the overall mean job response time obtained by simulation is very close to that obtained analytically. Also, the simulation results show that the performance of the proposed load balancing policy outperforms that of the random and uniform distribution load balancing policies in terms of mean job response time. The improvement ratio increases as the system workload increases and the maximum improvement ratio obtained is about 72% in the range of system parameter values examined. Keywords-grid computing; resource management; load balancing; performance evaluation; queuing theory; simulation models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Capacity-based Load Balancing and Job Migration Algorithm for Heterogeneous Computational Grids

This paper addresses the problem of scheduling and load balancing in heterogeneous computational grids. We proposed a two-level load balancing policy for the multi-cluster grid environment where computational resources are dispersed in different administrative domains or clusters which are located in different local area networks. The proposed load balancing policy takes into account the hetero...

متن کامل

On the performance-driven load distribution for heterogeneous computational grids

Load balancing has been a key concern for traditional multiprocessor systems. The emergence of computational grids extends this challenge to deal with more serious problems, such as scalability, heterogeneity of computing resources and considerable transfer delay. In this paper, we present a dynamic and decentralized load balancing algorithm for computationally intensive jobs on a heterogeneous...

متن کامل

Distributed Dynamic Load Balancing in P2P Grid Systems

P2P Grids could solve large-scale scientific problems by using geographically distributed heterogeneous resources. However, a number of major technical obstacles must be overcome before this potential can be realized. One critical problem to improve the effective utilization of P2P Grids is the efficient load balancing. This chapter addresses the above-mentioned problem by using a distributed l...

متن کامل

Decentralized load balancing in heterogeneous computational grids

With the rapid development of high-speed wide-area networks and powerful yet low-cost computational resources, grid computing has emerged as an attractive computing paradigm. The space limitations of conventional distributed systems can thus be overcome, to fully exploit the resources of under-utilised computing resources in every region around the world for distributed jobs. Workload and resou...

متن کامل

Parleda: a Library for Parallel Processing in Computational Geometry Applications

ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011